

POZNAN UNIVERSITY OF TECHNOLOGY

Resource recovery at the WWTP

Magdalena Budych-Górzna

"Only those who will risk going too far can possibly find out how far one can go."

T.S. Eliot

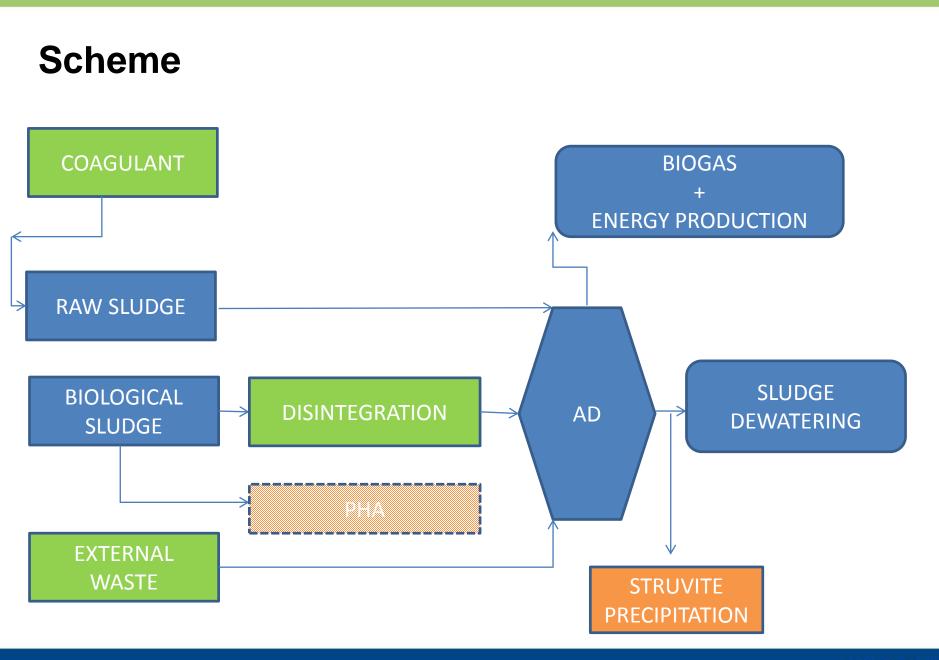
Changing attitude to wastewater treatment process

1. Previously

- Clean sewage
- Fulfilling law requirements

2. Nowadays

- Pro-environmental technologies
- Improvement of economic balance at the WWTP

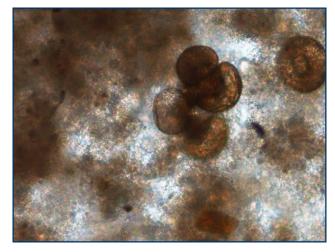

How to improve economic balance at WWTP?

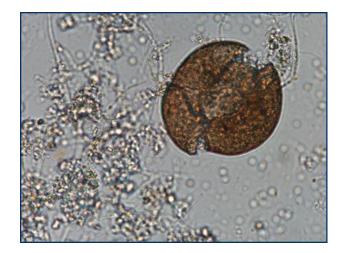
- 1. Limitation of energy consumption
 - Better electric efficiency of equipment
 - Advanced steering system (e.g. STAR)
 - New technologies (e.g. Anammox)
- 2. Maximizing of energy recovery
 - Sludge fermentation
 - Waste fermentation

3. Resources recovery (C, N, P, metals)

Sludge disintegration (1)

The aim:


- Pretreatment of biological / excess sludge
- Flocks and cells lysis and organic matter release
- Increase of biogas production


Technology methods:

- Mechanical methods (ultrasonic, hydrodynamic etc.)
- Chemical methods (alkaline, acidic etc.)
- Thermal methods (low or high temperature)
- Mixed methods

Effectiveness:

5%-30% of higher biogas production

Sludge disintegration (2)

Example: Implementation mixed disintegration in WWTP 1 mln PE

Date:

Biological sludge production 22 000 kg VS/d Pretreatment: NaOH 30% + 60°C 1h

Results:

Biogas enhancement: 25% Covering energy demand: 8-10%

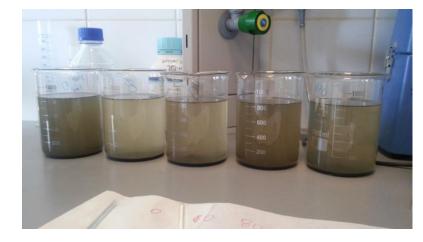
Expected economic benefit:

Savings
Expenses

ca. 800 000 PLN/a ca. 350 000 PLN/a (+) **450 000 PLN/a**

Coagulants (1)

The aim:


- increase of biogas production
- reduce of energy consumption

Methods:

- Inorganic coagulants (PIX)
- Organic coagulants

Advantages:

- Increase of suspended solid reduction
- More effective organic carbon distribution
- Higher biogas production
- Better dewatering sludge parameters
- Lower oxygen consumption

PIX: < H2S in biogas < struvite problems

organic coagulants:
> Possibility to phosphorus recovery

Coagulants (2)

Example: Implementation coagulant dosage in WWTP 1 mln PE

Date: PIX 60g/m³ Qs 110 000 m³/d Energy Consumption = 24 mln kWh/a Bio Part = 12 mln kWh/a

Parameters	Lack of PIX	PIX 60g/m3	Reduction
	[mg/l]	[mg/l]	[%]
COD	613	413	32
BOD	284	188	33
SS	142	91 36	
Ptot	9,58	6,09 36	
Ntot	59,7	55,2	7,5

Results:

Extra biogas production: ? Oxygen savings: 25-30% (theoretical calculation according to ATV directions) Reduction in energy demand: 12,5%

Expected economic benefit:

Savings (oxygen) ca. 1 100 000 PLN/a

Expenses (PIX)

ca. 1 000 000 PLN/a

(+) 100 000 PLN/a

RISK of denitrification stability!!!

Waste co-digestion (1)

The aim:

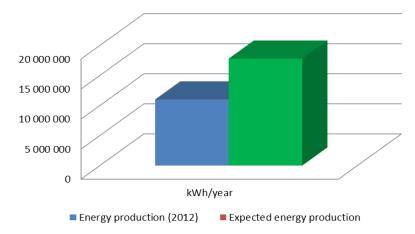
- Increase of biogas production
- decrease the electricity supply from non-renewable resources.

Technology methods:

- Waste pretreatment: fragmentation, dilution, heating
- Waste dosage to existed fermentation chamber

Effectiveness:

 Higher biogas production depending on kind of waste and reserve ("free space") in AD


Waste co-digestion (2)

Example: Co-digestion of sludge from poultry industry in WWTP 1 mln PE

Data for calculation:

Extra organic load 8 500 kgVS/d SBP 1,0 m³/kgVS Unit energy production 2,2 kWh/m³

SBP - specyfic biogas production from waste

Expected increase energy production from biogas

Results:

- 60% higher energy production
- covering energy demand (+) 30%

Energy recovery – summary

Parameter	Unit	Value
Energy consumption	kWh/year	24 000 000
Energy production	kWh/year	<u>11 000 000</u>
Covering energy demand	%	46
Extra energy production: waste	kWh/year	6 800 000
Extra energy production: disintegration	kWh/year	1 700 000
Energy savings: coagulants	kWh/year	3 000 000
Expected covering energy demand	%	93

Controlled struvite precipitation (1)

The aim: Phosphorus recovery

Technology methods:

- From sewage
- From sludge after fermentation

Advantages:

- P and N load decrease
- P reduction efficiency 80-95%
- N reduction efficiency 10-15%
- Lower flocculant dosage ca. 10%
- Higher dry mass after sludge dewatering (2-4%)
- Fertilizer production and disposal MgNH₄PO₄*6H₂O

Biopolymers – PHA production (1)

The aim:

Reuse of organic matter from the sludge

Technology scheme/ three-step process:

Use of the sludge stream in combination with mixed microbial cultures

- Prefermentation and VFA production
- Enrichment to select microorganism with high PHA storing capacity
- PHA accumulation

Effectiveness:

30-60%PHA in dry mass of sludge

Biopolymers - PHA production (2)

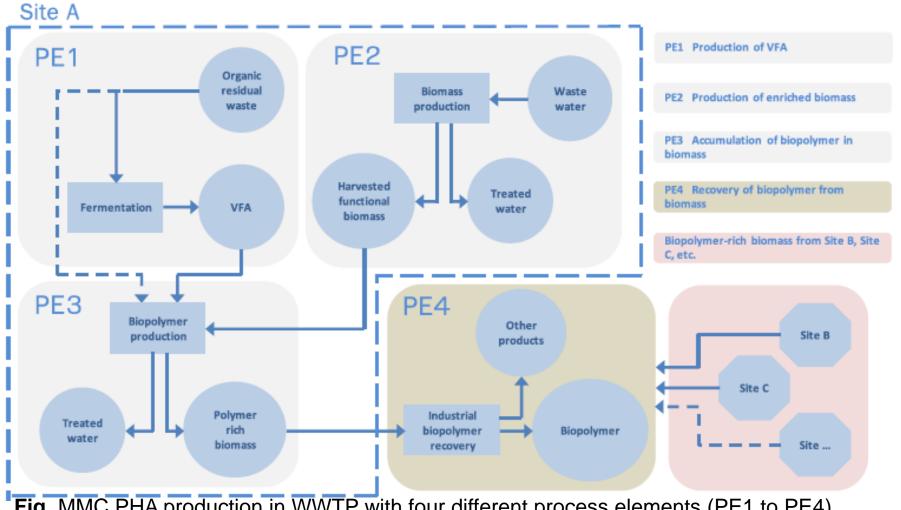


Fig. MMC PHA production in WWTP with four different process elements (PE1 to PE4) F.Morgan-Sagastume, 2016

Conclusions

- 1. Nowadays the priority become the integrated view on the WWTP operation in terms of technology and economics.
- 2. New technologies give wide opportunity in energy and materials recovery to save naturals resources.
- 3. We should look for effectiveness and economically reasonable methods feasible in technical scale.

Thank you for your attention

Magdalena Budych-Górzna Aquanet S.A. E-mail: magdalena.budych-gorzna@aquanet.pl

POZNAN UNIVERSITY OF TECHNOLOGY

