Deutsches Biomasseforschungszentrum DBFZ gemeinnützige GmbH

Scientific measurements of methane emissions with remote and on-site methods in comparison <u>Tanja Westerkamp</u>, Torsten Reinelt, Jan Liebetrau

2nd IBBA workshop "Methane Emissions", 04/09/2014, Molfsee/Kiel

Why do we want to quantify emissions from biogas plants?

What are the challenges? Which methods are available?

Techniques in use at DBFZ

Results of a recent research project

- What was quantified?
- Comparison of two methods
- Experiences and complications

Summary

Reasons to quantify methane emissions

- Evaluation of the biogas technology
 - Methane is a GHG
 - Safety
 - Economy and efficiency
- Regulations and certification systems
- Data basis and inventory
- Operational improvement
- Acceptance

Challenges and methods

Several source types

- Stationary and diffuse emission sources
- Point and area sources

Identification of <u>all</u> emission sources

Time variant sources

Methods

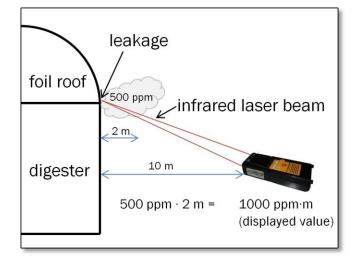
- On-site
 - Leakage detection
 - Quantification of single sources
 - Summation of single emission rates
- Remote sensing
 - Spectrometry of downwind plume
 - Wind conditions
 - Dispersion modelling or tracer gas comparison

Methods applied by DBFZ

On-site method

- Identification of emission spots
- Measurement sections at e.g.
 - Digestate storages
 - Leakages
 - Upgrading units
 - Pressure relief valves
- Defined flow rate
- Sampling in evacuated vials and GC analysis in the lab
- Calculation and summation of single emission rates

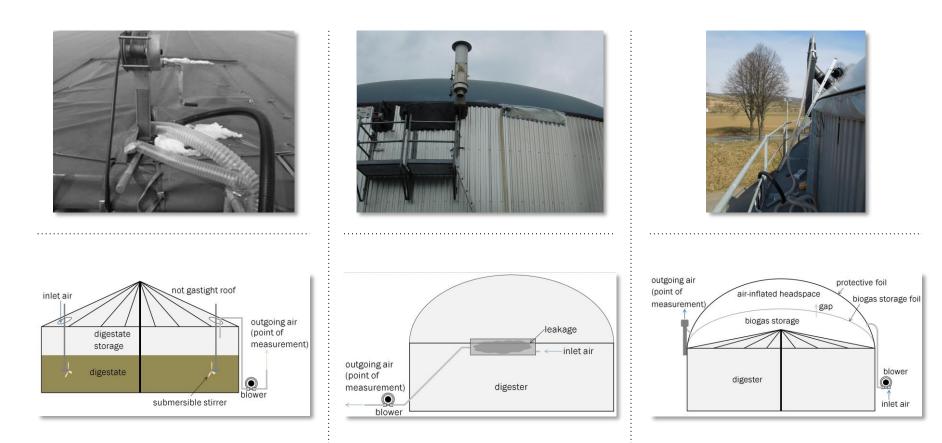
Remote sensing method


- OpenPath-Tunable Diode
 Laser Absorption Spectrometry (TDLAS)
- Up- and downwind measurements of the methane concentration
- Measurement of micrometeorological conditions (3D anemometer)
- Inverse dispersion modelling to determine the total emission rate (Windtrax)

On-site method Identification of leakages

Infrared camera

- Remote detection
- Temperature offset between biogas and background radiation



Hand-held methane laser

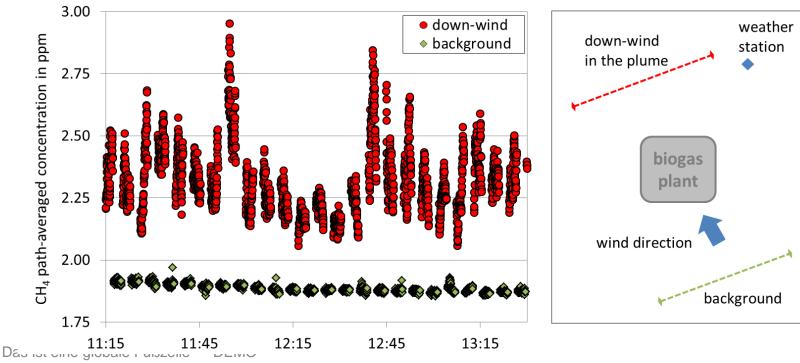
- Remote sensing
- Selective for methane
- Consideration of "moving" methane plumes

On-site method Quantification of single emission sources

not gastight covered digestate storage

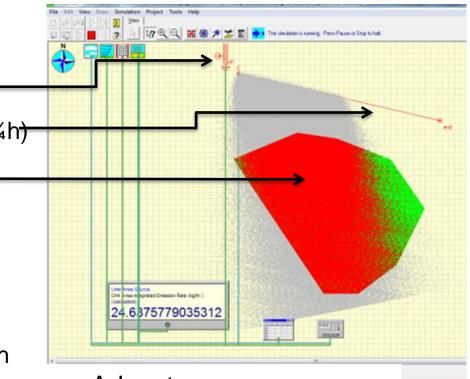
encapsulated leakage

two layer rubber dome


Remote sensing method Quantification with TDLAS and inverse dispersion modelling

TDLAS

- High time resolution
 - Real time concentration values


Remote sensing method Inverse dispersion modelling

Use of Windtrax

- Input parameter
 - Meteorological conditions
 - Concentrations (mean values of ¼h)
 - Area source geometry
- Simulation
 - Backward Lagrangian Stochastic model
 - Air parcels from measurement path backward in time
- Result
 - Emission rate of area source

Running simulation

- Advantages:
 - Easy measurement set-up
 - User friendly due to GUI

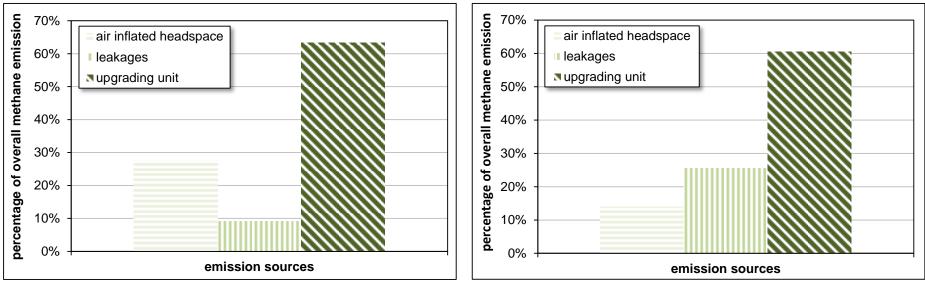
Method comparison

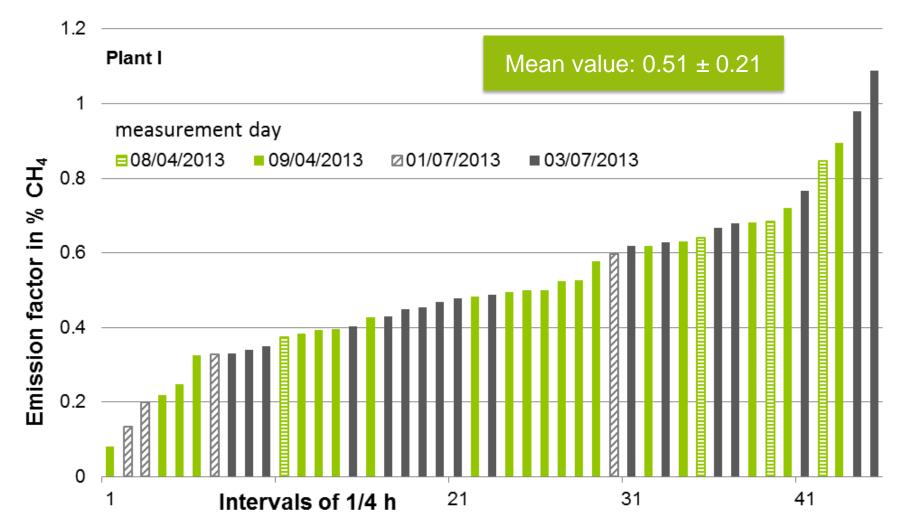
	On-site measurement	Remote sensing		
Strengths	 Identification of single sources Single emission rates Mitigation strategies Low detection limit (total emission rate) Weather independent Variable effort 	 Longtime measurements with high resolution No influence on plant operation Time effort independent on plant size 		
Constraints	 Time variant emission sources Unknown and diffuse sources High effort on large sites Influence of measurement on emissions 	 No identification of single sources Wind conditions Topology Uncertainties of dispersion model 		
		other.		

Project results

"Climate effects of a biomethane economy"

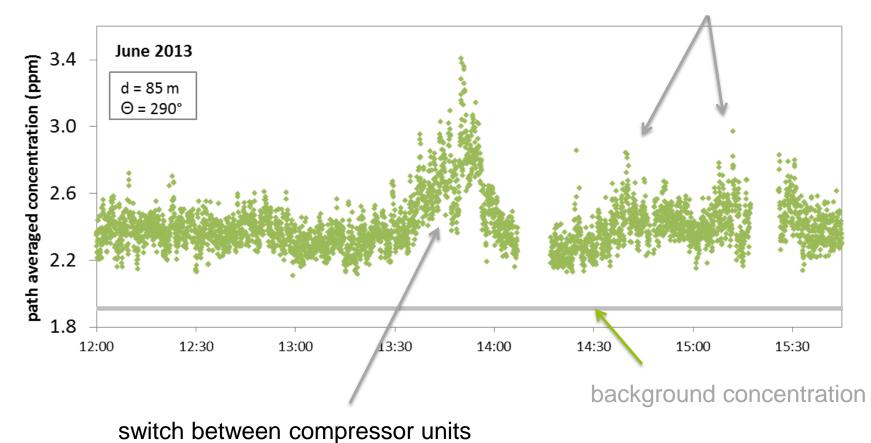
- Funded by the German Federal Ministry of Food and Agriculture
- 3 state of the art biogas plants with upgrading units
- 2 methods in comparison


Plan t	Treat- ment	Temp. level	Output (m³ CH ₄ h ⁻¹)	Sub- strates	Retention time (d)	Digestat e cover	Up- gradin g
I	ation	<u>li</u>	500 - 600	energy crops	90	gas-tight	obing
Ш	wet fermentation	mesophilic	1.800	energy crops	100	not gas-tight	amine scrubbing
Ш	wet fe	Ĕ	1.500 -2.500	residual material	15 – 40	gas-tight	amin



- Biogas plant I
 - Sole plant that could be measured completely by on-site method
 - Three types of emission sources
 - Active pressure relief vents were not detected visually

Project results Details – Remote sensing



Das ist eine globale Fußzeile --- DEMO

Project results Details – Remote sensing

Plant II

over pressure reliefs

Project results

Measurement extend	spring		summer		
Plant	On-site	Remote	On-site	Remote	
I	4 days	2 days, 17 intervals	4 days	2 days, 14 intervals	
Ш	5 days	2 days, 21 intervals	5 days	2 days, 30 intervals	
Ш	5 days	2 days, 23 intervals	5 days	3 days, 20 intervals	
	spring		summer		
Emission factors (% CH₄)	spr	ing	sum	mer	
factors (%	spr On-site	ing Remote	sum On-site	mer Remote	
factors (% CH₄)					
factors (% CH₄)	On-site	Remote	On-site	Remote	

Project results General observations

- Plant I and III (gas-tight):
 - no seasonal variations
 - remote sensing results follow Gaussian distribution
- Plant II:
 - seasonal variation of the emissions
 - \circ malfunctions during the measurements \rightarrow higher emissions
 - Only 140 h malfunctions out of 7600 h in 2013 lead to an increase of the mean emission factor from 1.5 % CH_4 to 2.1 % CH_4 over the year (remote sensing result).

Project results Discussion of difficulties

General	On-site method	Remote sensing
On-site results lower than	Plant size and no. of	Temperature
remote results	leaks \rightarrow not all sources	dependence of signal \rightarrow calibration with
Malfunctions have a large	→ not all sources measured	uncertainties
influence on results	\rightarrow extrapolations with	
	high uncertainties	Correlation between wind
Mean over the year \rightarrow large variations	→ measurement at pressure relief vents	speed and emission rate \rightarrow real effect or model
possible	necassary	specific?
	, i i i i i i i i i i i i i i i i i i i	
	Measurements might	Wind conditions
	influence emission rates \rightarrow to which extend?	 No simulation for ~ 1/3 of the measurements
		No simultaneous

measurement of plume and background

Summary and Outlook

- On-site method essencial to identify mitigation potentials
- On-site method with lower results than remote sensing
- All three plants had leakages
- Remote sensing yields reliable results regarding total emission rates
- Most concentration rises during remote sensing could be correlated to malfunctions on the plant
- Advantages of both methods are complemental
- Joint measurement in Sweden next week
- Further research programs:

operational emissions, open digestate storage, different dispersion model

Deutsches Biomasseforschungszentrum gemeinnützige GmbH

This work was funded by Fachagentur Nachwachsende Rohstoffe e. V. (support code: 22009310)

> DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434 – 112 E-Mail: info@dbfz.de www.dbfz.de